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FREE-SURFACE FLOW OVER CURVED SURFACES
PART II: COMPUTATIONAL MODEL

R.C. BERGERa AND G.F. CAREYb,*
a USAE Waterways Exp. Station, Vicksburg, MS, USA

b Uni6ersity of Texas, Austin, TX, USA

SUMMARY

In Part I a detailed derivation of a more general shallow water equation set was developed via a
perturbation analysis. A finite element computational model of these more general equations is now
constructed and the model behavior is compared with conventional shallow water formulations applied
to an outletworks flume. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The momentum equations derived in Part I are in non-conservative form and are written for
a specific distance above the bed to include effects due to curvature. The standard two-dimen-
sional shallow water equation formulation assumes a mild bed slope and no curvature effect.
These assumptions limit the applicability of these equations for some important classes of
problems. In particular, flow over a spillway is indeed affected by the bed curvature via a
decidedly non-hydrostatic pressure distribution. In Part II these equations are depth-integrated
and incorporated in a computational model. This form of the equations may be useful in
handling non-smooth conditions. The weak form solution for the no-curvature condition that
would be encountered downstream of the spillway can be made to properly conserve
momentum and mass through a hydraulic jump, whereas other forms of the equations may
not. In the case in which there is bed curvature, these equations will contain additional terms
due to the bed curvature which, while finite through the jump, will make an additional
contribution that can cause an error in the jump location. Therefore, in the vicinity of the jump
these equations, which properly conserve mass and momentum for the no-curvature case, will
conserve mass precisely in the curved bed state only. Generally, in practical cases the strong
jump is restricted to the region downstream of the spillway face where the bed contains no
curvature.

Several recent finite element schemes for the shallow water equations utilize the Petrov–
Galerkin approach [1,2] and are considered in Reference [3]. Such a scheme is constructed here
for the system developed in Part I to handle bed curvature effects. The treatment proceeds as
follows: first the model equations are summarized and an appropriate test function is devised.
Next, the finite element Petrov–Galerkin system is presented and the treatment of boundary
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conditions, viscous stresses, bottom friction model etc. is discussed. Some flume comparison
studies conclude the work.

2. MODEL EQUATIONS AND FINITE ELEMENT TREATMENT

From Part I, the equations for the curved bed formulation are
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where the coefficients ai, bi and ci result from depth integration
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The coefficients bi are simply obtained by exchanging the subscripts 1 and 2 in the right-hand-
sides of these equations for ai.
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The Petrov–Galerkin formulation incorporates a combination of the Galerkin test function
and a non-Galerkin component to control oscillations due to convection. It is sufficient to
consider the zero-curvature case only when selecting the test functions. This is significantly
simpler than including curvature and can be justified on physical grounds. The shallow water
equations (with z1 and z2 not identically equal to 1) then simplify to
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where c= (g3h)1/2 and g3 is the gravitational component in the bed-normal direction. Let
l1=u/z1, l2= (u+c)/z2, l3= (u−c)/z3 denote the eigenvalues of A, and P be the 3×3 matrix
of right eigenvectors. Similarly, let gi=1, 2, 3 be the eigenvalues of B, and R the corresponding
matrix. The test function then has the form
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The test function in Equation (4) will now be used in a Petrov–Galerkin finite element
formulation for the model equations (1) including bed curvature.

The weighted residual statement becomes&
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where, n1 and n2 are the components of the outward normal vector to the boundary.
A slip flow boundary at a solid wall corresponds to the condition un=0 and is imposed

through the weak statement for mass conservation and momentum conservation in directions
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The upstream boundary condition is an essential condition. If the flow here is subcritical then
the flow components are specified as either û and 6̂ or p and q. If the flow is supercritical the
depth is also specified. The downstream boundary condition is unspecified if the flow is
supercritical there. If the flow is subcritical the depth is specified by substituting the specified
depth in the boundary integral terms of the momentum equations.

The viscous stress is of less importance in the calculation of the free-surface, except as the
flow passes through the hydraulic jump. The contribution is small when the flow is smooth.
The present stress calculation is based upon the velocity and metric gradients at the bed, so
that a lateral or longitudinal stress is not produced by the assumed vertical velocity profile.
The stresses [4] then are
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The first subscript indicates the face upon which the stress acts and the second is its direction.
When applied to the present numerical system, the following additional contributions to the
respective momentum equations are obtained
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These contributions are included in the left-hand-side of Equation (9). The stress jump
across inter-element boundaries is set to zero and a stress-free boundary is assumed along the
domain edge.

The turbulent eddy viscosities generated by the bottom friction are given by [5,6]

nt=CBhf 1/2 �u �, (18)

where nt is the turbulent viscosity, CB is a coefficient that varies between 0.1 and 1.0, and f is
the Darcy–Weisbach friction coefficient (see e.g. Reference [7]). The turbulent contribution to
viscosity is generally much larger than the molecular viscosity.

The common practise in hydraulic engineering of using an empirical relationship developed
by Manning and extended to curved beds in one dimension by Dressler and Yevjevich [8] is
adopted here. This is extended to two dimensions. Therefore, the force per unit mass as it
appears on the right-hand-side of the s1 momentum equation becomes
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and similarly for the s2 momentum equation
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These terms are included in Equation (9) for the bed drag force.
The finite element approximation for Equation (9) becomes
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where the symbol � indicates the discrete value of the quantity and the subscript indicates a
particular test function. The geometry and flow variables are represented using the finite
element basis; e.g.
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Quadrilateral bilinear elements with nodes at the element corners are used. The grid intervals
Ds1 and Ds2 in the physical domain are chosen in the same manner as Katopodes [1]
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The temporal derivative may be represented as
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where the subscript j indicates a particular node location and the superscript indicates the time
step. If g=3/2, this defines a second-order backward difference in time; if g=1 the standard
first-order backward difference is obtained (both schemes are unconditionally stable for the
linear problem). Within a time step, Newton Raphson iteration is used to solve the non-linear
problem set.

3. OUTLETWORKS FLUME

Previously, one-dimensional tests have demonstrated the importance of the Dressler equations
in problems with bed curvature [3,9–12]. The formulation is extended to two-dimensions in
Part I and in the present section the validity of a computational representation of these
equations on a problem with two-dimensional variation is investigated. The numerical test
presented here is of an outletworks flume that is supercritical throughout containing bed
curvature and lateral transitions. Model resolution is refined until no significant change results
from additional refinement. Additional numerical studies of simpler cases including compari-
son with data [10–12] are given in Reference [3].

The steep slope, St. Venant and the present generalized model equations are compared with
data for an outletworks physical model at the Waterways Experiment Station, WES. Here, our
primary concern is the lateral behavior predicted by the mathematical models for realistic
structures. A diagram of the flume, as tested, is shown in Figure 1. The plan view geometry for
the flume and the model are identical but the numerical approximation to bed elevation has
smooth transitions to provide a continuous slope. The dimensions of the flume were chosen
such that typical operating conditions place the flow regime within the fully turbulent region.
For the present test, the Reynolds number is about R � uh/n:200000, which indicates that
scale effects are small. For even relatively smooth bed and wall conditions the flume will be in
the fully turbulent regime (see References [13,14]). Therefore, the flume results can reasonably
be expected to exhibit behavior similar to large-scale structures of this type.

The bed elevation of the flume is purposely laid out longitudinally as a parabolic function
to minimize flow separation. The actual dimensions in Figure 1 are ‘as measured’ and vary
slightly from the construction specifications, primarily as a result of settling. The transition
from the circular conduit to the apron is fairly complicated. The walls have a slight flair with
a radius of 2.75 ft and the bed has fillets to move smoothly from the round conduit to the
rectangular section of the apron. The apron wall has an outward slope of :6. A level stilling
basin which contains baffles and an end sill is located 4.015 ft from the conduit exit. These
stilling basin features are not numerically modeled here because these effects far downstream
are of lesser importance to the spillway flow. The actual bed elevation numerically modeled (as
shown in Figure 1) contains no discontinuities in slope so that the curvature exists throughout.
The bed is flat in the lateral direction, i.e. all slope and curvature variations are in the
longitudinal direction.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 201–213 (1998)
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The flume water surface is recorded every 0.05 ft laterally and every 0.10 ft longitudinally.
An additional reading is made near the sidewalls (typically within 0.02 ft). The measurements
are recorded with a point gage capable of measuring to a precision of 0.001 ft (it is graduated
in 0.01 ft units and with a vernier changes of 0.001 can be detected). In reality the water
surface is quite rough and time varying, so that readings are approximately accurate to :0.02
ft. The flow rate is measured using a 12×6 inch venturi meter with a differential manometer.
The inflow pressure is maintained by a constant head tank. The manometer calibration is
checked using direct measurements of volume change in a specific time period. The discharge
is estimated to be accurate within 3% (C.H. Tate, private communication).

The flume water surface results are shown in Figure 2 as a three-dimensional perspective for
a flow rate of 2.56 cfs (cubic feet per second). The view shows the lateral hump in the water
surface as the flow exits the outlet conduit. This eventually spreads to a relatively uniform
depth as intended in the design. If flow becomes focused, however, the result will be circulation
in the stilling basin with possible damage there. The non-uniform velocity field would also

Figure 1. Outletworks flume: flume and numerical model geometry.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 201–213 (1998)
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Figure 2. Outletworks flume: water surface results, perspective view.

cause more downstream erosion. The drag of the apron sidewalls causes the sharp rise in water
surface. The build-up in water depth along the sides of the stilling basin is a result of the
change in side slopes.

The numerical model is constructed of 408 nodes and 368 elements (see Figure 3). It extends
longitudinally from x=0.75 to 6.0 ft. The upstream boundary is therefore below the complex
geometry of the fillets near the conduit exit and the vertical velocity profile should be closer
to an open-channel flow distribution. The flow is supercritical throughout the study reach, and
at the upstream boundary the velocity and depths are specified. The depths are the flume
results interpolated from the 0.70 and 0.80 ft ranges. The z component velocity distribution is
assumed to be uniform across the upstream boundary. The lateral velocity component at the
inlet is specified so that the flow is tangent to the sidewalls and zero in the channel center with

Figure 3. Outletworks model: computational mesh.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 201–213 (1998)
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Figure 4. Water surface results showing model and flume comparison at sections x=1.0 and 1.6 ft.

linear variation between these stations. These are the simplest reasonable boundary conditions
and should be suitable for a comparison of model equations. Furthermore, this is as much
information as a modeler usually has in order to make a site-specific study. The turbulent
viscosity nt=0.05 f2 s−1 corresponds to a value of CB:0.1. Other parameter values for the
calculation are: m=0.012, Dt=0.05 s, e=0.03 and g=32.208 f s−2. The simulation time is
15 s and a maximum of 3 N iterations per step is required. Figure 4 shows the water surface
elevation at sections x=1.0 and 1.6 ft for flume results and the generalized shallow water
equation model. Both show the rapid collapse of the flow plume along the channel length. A
direct comparison shows the standard deviation of the difference between the flume and model
to be 0.032 and 0.022 ft at x=1.0 and 1.6 ft, respectively. The model plume drops to a more
uniform water surface elevation somewhat more quickly than the flume.

More detail is found in Figures 5–8 which show the depth contours for the flume, the
generalized shallow water equations, the standard steep-slope shallow water equations, and the
St. Venant equations. The flume and St. Venant measurements are made vertically as water
surface elevations which we have converted to depths normal to the bed. The flume data in the
upper region reveals a continuation of the conduit shape, i.e. a hump in the water surface with
the centerline being a relative maximum. This form ends near x=1.75 ft. From there on, the
centerline is a relative minimum or the surface is nearly flat. This is the desired pattern for a
good hydraulic design. At the channel edges the wall drag causes a substantial build-up of
water depth.

A most important result of the generalized shallow water equations is the more gradual
lateral spread of the flow tube. As an illustration, within the portion of the flume modeled
here, the flume shows the centerline to be a relative maximum for about 1.0 ft. The model

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 201–213 (1998)
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Figure 5. Outletworks flume: depth contours.

including curvature gave a similar length. The steep-slope shallow water model (no curvature)
and the St. Venant equations are nearly identical throughout the domain. The length for which
the centerline is a maximum as predicted by these models is only :0.7 ft. Hence, the
non-hydrostatic component has a definite effect upon the wave speed here. The lateral
variation is strongly dependent upon the non-hydrostatic contribution. The predicted wave
celerity for a similar case in which the curvature and dominant flow direction are along the
x-axis can be shown [9] to be

cgswe=
!

−
log(1−k1h)
(1−k1h)k1

�
g3+

k1û2

(1−k1h)3

n"1/2

. (24)

On the other hand, the celerity without curvature included is simply

csswe= (g3h)1/2. (25)

A convex curvature (k1 negative) produces a lower celerity in the generalized equations which
is not captured in the standard shallow water equations. The true solution, which includes
non-hydrostatic pressure contributions as a result of short wavelengths in addition to bed

Figure 6. Outletworks model: generalized shallow water equations, depth contours.
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Figure 7. Outletworks model: standard steep-slope shallow water equations, depth contours.

curvature effects, has a wave celerity that is even smaller than the generalized equations
predict. In a concave region (positive curvature) the wave celerity predicted by the generalized
shallow water equations will be greater than that predicted by the standard shallow water
equations.

4. CONCLUSION

A generalized shallow water equation set to reproduce free-surface flow over curved beds has
been developed in this investigation and the model has been applied to spillway flows. These
generalized shallow water equations include bed curvature effects, and are non-hydrostatic and
two-dimensional. The equations are derived via a perturbation expansion in a shallowness
parameter. A significant assumption made in this derivation is that the flow is irrotational
about axes parallel to the plane of the bed. However, there is no limitation on vorticity about
axes normal to the bed.

Figure 8. Outletworks model: St. Venant equations, depth contours.
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The final development involved a two-dimensional model in which the non-linear terms were
addressed via a Newton Raphson technique, iterating at each time step. A Petrov–Galerkin
scheme was introduced, based on the SUPG idea in which the test function is weighted using
the eigenvalues of the convection matrices.

One-dimensional tests reported elsewhere [3] for a curved bottom flume with straight walls
compared remarkably well with the flume water surface data. The spillway capacity was
accurately captured and a comparison of bed pressure was quite good. The St. Venant and the
standard steep-slope shallow water equations missed the spillway capacity, both prediciting a
greater water surface elevation to attain the steady discharge. (The hydrostatic pressure
assumption misses the reduction in pressure caused by the uplift of the flow over the curved
crest. This is responsible for the error in spillway capacity.) Along the downstream face the
standard steep-slope formulation compared quite well with the generalized shallow water
equations and flume data. The St. Venant equations predicted too steep a water surface slope.
This was shown to be a result of the mild-slope assumption, and was not curvature related.
The principal improvement of the new equations over the ‘no-curvature case’ is in the
neighborhood of the spillway crest.

In the present work, experimental data on a flume at the Waterways Experiment Station was
collected to study outlet works. Here the emphasis was upon lateral variations in water surface.
The improvement offered by the new equations was subtle showing slower (and more realistic)
spread of the flow conduit over negative curvature regions. Overall, however, the representa-
tion of what is essentially a short wave phenomena was weak. However, the results did provide
a qualitative picture of the flow that is beneficial for designers.
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